Synthesis and properties of phosphonic acid-grafted hybrid inorganic–organic polymer membranes
نویسندگان
چکیده
منابع مشابه
Elastic constants of polymer-grafted lipid membranes.
The surface expansion that is induced by the lateral pressure in the brush region of lipid membranes containing grafted polymers is deduced from the scaling and mean-field theories for the polymer brush, together with the equation of state for a lipid monolayer at the equivalence pressure with fluid lipid bilayers. Depending on the length and mole fraction of the polymer lipid, the membrane exp...
متن کاملEnzymatic synthesis of organic-polymer-grafted DNA.
To create bioorganic hybrid materials, interdisciplinary work in the fields of chemistry, biology and materials science is conducted. DNA block copolymers are promising hybrid materials due to the combination of properties intrinsic to both the polymer and the nucleic acid blocks. Until now, the coupling of DNA and organic polymers has been exercised post-synthetically in solution or on solid s...
متن کاملStructure and transport properties of polymer grafted nanoparticles.
We perform molecular dynamics simulations on a bead-spring model of pure polymer grafted nanoparticles (PGNs) and of a blend of PGNs with a polymer melt to investigate the correlation between PGN design parameters (such as particle core concentration, polymer grafting density, and polymer length) and properties, such as microstructure, particle mobility, and viscous response. Constant strain-ra...
متن کاملPES/Quaternized-PES Blend Anion Exchange Membranes: Investigation of Polymer Compatibility and Properties of the Blend
Polyethersulfone (PES)-based anion exchange blend membranes were prepared from quaternized-PES (Q-PES) and N-Methyl-2-pyrrolidone (NMP) casting solutions with water as coagulant via non-solvent induced phase inversion. The compatibility of the blend system was investigated through thermodynamic studies while membrane formation was determined using the cloud point techni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: J. Mater. Chem.
سال: 2006
ISSN: 0959-9428,1364-5501
DOI: 10.1039/b512389e